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SUMMARY & CONCLUSIONS 
 

Micro-Doppler features can be regarded as a unique 
signature of an object with movements and provide additional 
information for classification, recognition and identification of 
the object.  Independent component analysis (ICA) can 
decompose micro-Doppler features into independent basis 
functions that represent salient physical movement attributes 
of the object.  To study ICA of micro-Doppler features, we 
used a dataset generated by simulation of radar returned 
signals from rotating objects and tumbling objects. Fast ICA 
algorithm was used in our study to decompose micro-Doppler 
features into a set of spatial and temporal independent 
components.  Spatial characteristics of the independent 
components combined with the corresponding temporal 
characteristics can be used to improve performance of 
classification, recognition and identification.  

 
1.  INTRODUCTION 

 
Micro-motions, such as vibrations or rotations of an 

object or structures on the object, may induce additional 
frequency modulations on radar returned signal which 
generate sidebands about the object’s Doppler frequency, 
called micro-Doppler [1].  Sources of micro-motions may be a 
rotor of a helicopter, a rotating antenna, natural mechanical 
oscillations in a bridge or a building, an engine-induced 
vibrating surface, or other causes.  Electromagnetic 
backscattering from an object with micro-motion dynamics is 
subject to modulations in amplitude, phase, and polarization. 
The relationship between the object's micro-motions and the 
modulation characteristics constitutes distinguishable features 
in radar signatures.   

Because micro-motions impose periodic and time-varying 
modulations onto the carrier frequency, to explore these 
features, time-frequency analysis [2] is used to provide 
information about these localized features in the joint time and 
frequency domain.   

Micro-Doppler features can be regarded as a unique 
signature of an object that enables us to determine motion 
dynamic properties and provides additional information on the 
object that is complementary to existing methods.  Thus, how 
to extract and analyze the salient micro-Doppler features 
becomes an important issue.   

 
2.  ANALYSIS OF MICRO-DOPPLER FEATURES 

 

Principal component analysis (PCA) [3] is a best-known 
method for feature analysis that uses eigenvectors with the 
largest eigenvalues to obtain a set of basis functions such that 
the original function can be represented by a linear 
combination of these basis functions.  The basis functions 
found by the PCA are uncorrelated, i.e., they cannot be 
linearly predicted from each other.  However, higher order 
dependencies still exist in the PCA and, therefore, the basis 
functions are not properly separated. 

In analyzing spatially localized micro-Doppler features, 
high-order relationship among the basis functions may contain 
important information.  Thus, a feature analysis sensitive to 
high-order relationship is needed.  Independent component 
analysis (ICA) is just such a method [4-6]. 

ICA was originally developed to separate mixed signals 
into independent components for blind source separation.  
Because it can be used to find independent physical attributes, 
another important application of the ICA is feature extraction.  
It decomposes a set of features into a basis whose components 
are statistically independent.  ICA minimizes the statistical 
dependence between basis functions and searches for a linear 
transformation WICA to express a set of features X = (X1, 
X2,…XM) as a linear combination of statistically independent 
basis functions IC = (IC1, IC2,…ICN), so that the transformed 
components  

XWIC ICA=                                      (1) 
are independent, i.e., knowledge of the value of ICi provides 
no information on the value of ICj for i ≠ j.  Because there is 
no closed form solution for finding the matrix WICA , iterative 
algorithms have been used to search for the transformation 
matrix. 

As we know, independent events must be uncorrelated, 
but uncorrelated events may not be independent.  PCA only 
requires the components to be uncorrelated.  However, ICA 
accounts for higher order statistics and, thus, is a more 
powerful feature representation than PCA.  In fact, PCA 
similar to the Fourier analysis is basically a global component 
analysis, whereas ICA similar to the time-frequency or 
wavelet analysis is basically a localized component analysis.  

 
3.  INDEPENDENT COMPONENT DECOMPOSITION OF 

2-D FUNCTIONS  
 

ICA has been used to 2-D function analysis, such as 
natural image analysis and face recognition [7, 8].   Some 
results show that ICA outperforms PCA, and others show that 
there is not much performance difference between ICA and 
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PCA.  As a matter of fact, if the global features such as width 
and length are more important, then they are more easily 
extracted by PCA than ICA.  If features such as micro-
Doppler features are more spatially localized, ICA is better 
than PCA. 

 
ICA treats a 2-D function as a mixture of independent 

components.  An architecture of ICA of a set of 2-D functions 
X = (X1, X2, … XM) is shown in Fig.1(a).  ICA algorithm is an 
unsupervised learning that finds the weighting matrix WICA 
such that a set of N independent basis functions can be 
estimated by IC = WICA X.  Thus, a 2-D function is formed by 
mixing the independent components together with a mixing 
matrix A:  

ICAX ⋅=                                          (2) 
where 1−= ICAWA  and is a permuted version of 1−

ICAW .    Fig. 
1(b) illustrates IC decomposition of a 2-D function into a set 
of independent basis components   

NNk ICaICaICaX +++= ...2211
                     (3) 

The coefficients (a1, a2, … aN) of the linear combination of the 
independent components can be used in the independent 
component space to represent the 2-D function. 
 

4.  SPATIAL AND TEMPORAL INDEPENDENT 
COMPONENT ANALYSIS OF 2-D FEATURES 

 
Most applications of the ICA are spatial analysis.  Spatial 

ICA finds independent components of 2-D features over 
space, and represents a 2-D feature as a sum of the 
independent components ICs:  

∑
=

⋅=
N

n
nnk yxICayxX

1

),(),(                              (4) 

where an is the weight of independent component ICn(x,y) and 
can be found from the given spatial feature Xk(x,y) and the 
inverse of the independent components.  Thus, the ICn(x,y) 
(n=1,2,…N) can be regarded as the basic building blocks of 
these 2-D features. 

If a 2-D spatial feature varies over time, then temporal 
ICA may be used to find independent components over time.   
For many applications where 2-D features can be either 
spatially dependent, or temporally dependent, even both 
spatially and temporally dependent, ICA can be applied to 
spatial feature decomposition, temporal feature 
decomposition, and even the joint spatiotemporal feature 
decomposition [6, 7].  The best features extracted from the 
spatial and temporal ICA may be used to improve the overall 
performance of the classification process. 

To decompose a sequence of 2-D features over time, 
spatiotemporal ICA can maximize the degree of independence 
over space as well as time.  Instead of using a set of 2-D 
spatial features, a set of 3-D space-time feature cubes, i.e., a 
stacked 2-D spatial features over time, are used to find a set of 
spatiotemporal independent components, as shown in Fig. 2.   

∑
=

⋅=
N

n
nnk tyxICatyxX

1
),,(),,(                           (5)
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Figure 1 (a) An ICA block diagram, (b) IC 
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Figure 2 Spatiotemporal ICA. 

U.S. Government work not protected by U.S. copyright



5. SPACE-TIME MICRO-DOPPLER FEATURES 
 
Frequency modulation induced by micro-motion 

dynamics has both spatial and temporal characteristics.  
Fig. 3(a) shows an example of spatial micro-Doppler 
feature of a human gait process represented in the time-
frequency domain [1].  Human gait is a complex motion 
behavior that comprises different movements of individual 
body parts.  

 
 
In the human gait micro-Doppler signature, the body 

Doppler shift and the Doppler modulation of the swinging 
arms can be clearly seen in Fig. 3 (a).  The body Doppler 
shift is almost constant with a slightly saw-tooth shape 
because the body speeds up and slows down during the 
swing.  However, the arm’s micro-Doppler shift is a time-
varying periodic curve.  Doppler shift of one arm is higher 
and the other is lower than the body Doppler frequency 
shift.  From the time information in the micro-Doppler 
feature, the swinging rate of the arm can be estimated.  Fig. 
3 (b) shows a temporal sequence of human gait micro-
Doppler features.  The movement of the body and the arms 
can be seen. 

To illustrate applications of spatiotemporal ICA to 
micro-Doppler features, we simulate radar returns from two 
types of motion dynamics: rotation and tumbling.  In our 
simulation, the point scatterer model is used for modeling 
the objects because it is simple compared to the EM 
prediction code simulation and is easy to observe the effect 
of micro-motions and separately study individual 
movements [9].  

The geometry of the radar and a rotating object is 
illustrated in Figure 4(a).  The radar coordinate system is 
defined by (U, V, W), and the object local coordinate 
system is defined by (x, y, z).  Assume the azimuth and 
elevation angle of the object with respect to the radar 
coordinates (U, V, W) are α and β, respectively.   

Assume the object rotates about its axes x, y and z with 
an angular velocity T

zyx ),,( ωωωω =  or ω=Ω  and the 
corresponding initial rotation matrix is defined by ℜInit,  
thus, a point scatterer P initially located at  

Tzyxr ),,( 0000 =  in the local coordinates (x, y, z) is located 
at 0rInit ⋅ℜ  and at time t the scatterer P will move to 

0rr Initt ⋅ℜℜ=  , where ℜt is a rotation matrix.  Thus, the 

rotation induced micro-Doppler modulation can be derived 
as 

[ ]radialIniterMicroDoppl rtIt
c
ff 0)cossinˆ(ˆ2

⋅ℜΩ+Ω′′Ω
= ωω            (6) 

where ω̂ ′ , called the skew symmetric matrix, is defined by 
the unit vector of the rotation ω′ , which is defined 
by ωωω /⋅ℜ=′ Init   [9].                         

From (6) we can see that the micro-Doppler induced 
by rotation is a sinusoidal function of Ω with an initial 
phase and amplitude depending on the initial position and 
the initial Euler angles (φ, θ, ψ) of the scatterer.  

In our simulation, assume the radar operates at 10 GHz 
and an object, located at (U = 1000 m, V = 5000 m, W = 
5000 m), is rotating along the x, y and z axes with a 
random initial Euler angles centered at (φ = 45°, θ = 45°, ψ 
= 45°) and angular velocity T],,[ πππω =  rad/sec.  The 
object is designed as a cube that consists of eight point 
scatterers as illustrated in Fig. 4 (a).  With a pulse repetition 
frequency (PRF) of 1000, a total of 2048 pulses was 
transmitted within 2.05 sec of dwell time.  An example of 
the spatial micro-Doppler induced by the rotation is shown 
in the Fig. 4 (b).  From the micro-Doppler signature, the 
period of the rotation period can be calculated as 

16.1/2 == ωπT  sec.  

 

The second object is a tumbling one.  Tumbling 
consists of both translation and rotation motions as 
illustrated in Figure 4(c).  Assume the object has an initial 
velocity v along the x-axis and an acceleration of g = 9.8 
m/s2 due to gravity.  At the same time, the object rotates 
along the y-axis.  The azimuth and elevation angle of the 
origin O of the object local coordinates with respect to the 
radar are α and β, respectively.   

With the same radar parameters and the same object's 
model and location, assume the object is rotating along the 
y-axis with a random angular velocity centered at ω  = 2π 
rad/sec and with random initial Euler angles centered at φ = 
45°, θ = 45°, ψ = 45°.  For simplicity, the initial velocity of 
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Figure 4 (a) A rotating object, (b) micro-Doppler 
induced by rotation, (c) a tumbling object, (d) 
micro-Doppler induced by tumbling. 
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the object is assumed to be 0 m/s.  An example of the 
spatial micro-Doppler induced by the tumbling is shown in 
Figure 4(d). 

 
6. SPATIOTEMPORAL ICA OF MICRO-DOPPLER 

FEATURES 
 
The simulated micro-Doppler feature dataset described 

in Section 5 was used to study the spatiotemporal ICA.  
The dataset includes rotating objects with 50 different 
initial Euler angles and tumbling objects with 50 different 
initial Euler angles and angular velocities.  In our study, the 
spatial ICA was first used to a set of spatial micro-Doppler 
features.  Some selected samples of the spatial micro-
Doppler features are shown in Fig. 5 (a) and 48 spatial ICs 
are obtained by the fixed-point fast ICA algorithm [10] as 
shown in Fig. 5 (b).  Then, these 48 spatial ICs, served as 
the building blocks of the spatial micro-Doppler features 
induced by rotating objects and tumbling objects, can be 
used to reconstruct the micro-Doppler feature of a rotating 
or a tumbling object.  Fig. 6 demonstrates the reconstructed 
micro-Doppler feature from the 48 spatial ICs. 

To apply the spatiotemporal ICA, a set of space-time 
micro-Doppler feature sequences, each of them consists of 
256 time samples of 16-by-16 spatial micro-Doppler 
features, was used.  Weighting matrix was learned by the 
fast ICA algorithm using randomly selected feature 
sequences from the 100 (16×16×256)-micro-Doppler 

feature sequences in the dataset.  Thus, a set of 
spatiotemporal independent components was found as the 
building blocks of the space-time feature functions as 
shown in Fig. 7, and any micro-Doppler feature sequence 
can be decomposed into the spatial and temporal feature 
basis functions.  The wavelike temporal movement of the 
spatial features, as indicated in Fig. 7, added a new 
dimension to the micro-Doppler feature vector for 
improving the overall performance of classification, 
recognition and identification process. Fig. 8 shows the 
system diagram of the spatiotemporal ICA for micro-
Doppler feature extraction.  The spatial and temporal 
feature coefficients, which are the projections of a space-
time micro-Doppler feature into the spatiotemporal ICs, are 
the inputs to a classifier.  Classifier estimates the optimal 
boundary in the feature space for classification, recognition 
and identification of an object.  Here we will not discuss 
the issue of classifier in detail because it is beyond the 
scope of this paper. 
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Micro-Doppler Features

(b) Spatial ICs of 
Micro-Doppler Features
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Figure 5. (a) Samples of spatial micro-Doppler features of rotating objects and tumbling objects, (b) spatial ICs 
estimated from the dataset.
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